Understanding the processes that influence groundwater levels is crucial for forecasting and responding to hazards such as groundwater droughts. Mixed models, which combine a fixed mean, expressed using independent predictors, with autocorrelated random errors, are used for inference, forecasting and filling in missing values in groundwater level time series. Estimating parameters of mixed models using maximum likelihood has high computational complexity. For large datasets, this leads to restrictive simplifying assumptions such as fixing certain free parameters in practical implementations. In this paper, we propose a method to jointly estimate all parameters of mixed models using the Whittle likelihood, a frequency-domain quasi-likelihood. Our method is robust to missing and non-Gaussian data and can handle much larger data sizes. We demonstrate the utility of our method both in a simulation study and with real-world data, comparing against maximum likelihood and an alternative two-stage approach that estimates fixed and random effect parameters separately.
翻译:理解影响地下水位的动态过程对于预测和应对诸如地下水干旱等灾害至关重要。混合模型将使用独立预测变量表达的固定均值与自相关随机误差相结合,常用于潜水位时间序列的推断、预测及缺失值填补。基于最大似然法估计混合模型参数具有较高的计算复杂度,对于大规模数据集,这导致在实际应用中不得不采用限制性简化假设(例如固定某些自由参数)。本文提出一种基于Whittle似然(一种频域准似然函数)联合估计混合模型所有参数的方法。该方法对缺失数据和非高斯数据具有鲁棒性,并能处理更大规模的数据集。我们通过模拟研究和实际数据验证了该方法的有效性,并与最大似然法以及分两步分别估计固定效应和随机效应参数的替代方法进行了对比。