In this study, we propose a novel model called the Markov-switching dynamic matrix factor (Ms-DMF) model, which serves the dual purpose of structural interpretation and prediction for high-dimensional matrix time series. When estimating the parameters of the Ms-DMF model, an EM (expectation maximization) algorithm was used to get a quasi-maximum likelihood estimation, where all the parameters are estimated jointly. A filtering and smoothing algorithm is used to compute the posterior expectations corresponding to the latent regimes and factors. The consistency, convergence rates, and limit distributions of the estimated parameters are established under mild conditions. The effectiveness of this estimation method is also validated by rigorous numerical simulations. Furthermore, we apply the Ms-DMF model to an international trade flow network. Compared to existing matrix factor models, our approach not only identifies the main import and export centers, but also recognizes the trade cycles between these centers. This provides profound insights and analytical capabilities to advance research in the field of international trade.
翻译:本研究提出了一种称为马尔可夫切换动态矩阵因子(Ms-DMF)模型的新模型,该模型兼具结构解释与预测的双重功能,适用于高维矩阵时间序列分析。在估计Ms-DMF模型的参数时,采用EM(期望最大化)算法进行拟极大似然估计,所有参数均被联合估计。通过滤波与平滑算法计算对应于潜在状态与因子的后验期望。在温和条件下,建立了估计参数的一致性、收敛速率及极限分布。该估计方法的有效性亦通过严格的数值模拟得到验证。此外,我们将Ms-DMF模型应用于国际贸易流量网络分析。与现有矩阵因子模型相比,我们的方法不仅识别了主要的进出口中心,还揭示了这些中心之间的贸易循环。这为推进国际贸易领域的研究提供了深刻的洞见与分析能力。