Text-to-audio (TTA) generation can significantly benefit the media industry by reducing production costs and enhancing work efficiency. However, most current TTA models (primarily diffusion-based) suffer from slow inference speeds and high computational costs. In this paper, we introduce AudioGAN, the first successful Generative Adversarial Networks (GANs)-based TTA framework that generates audio in a single pass, thereby reducing model complexity and inference time. To overcome the inherent difficulties in training GANs, we integrate multiple ,contrastive losses and propose innovative components Single-Double-Triple (SDT) Attention and Time-Frequency Cross-Attention (TF-CA). Extensive experiments on the AudioCaps dataset demonstrate that AudioGAN achieves state-of-the-art performance while using 90% fewer parameters and running 20 times faster, synthesizing audio in under one second. These results establish AudioGAN as a practical and powerful solution for real-time TTA.


翻译:文本到音频(TTA)生成能够显著降低媒体行业的生产成本并提升工作效率,从而为该行业带来巨大益处。然而,当前大多数TTA模型(主要基于扩散模型)存在推理速度慢、计算成本高的问题。本文提出了AudioGAN,这是首个成功的基于生成对抗网络(GANs)的TTA框架,它能够单次前向传播生成音频,从而降低了模型复杂度和推理时间。为了克服训练GANs固有的困难,我们整合了多种对比损失,并提出了创新的组件:单-双-三重(SDT)注意力机制和时频交叉注意力(TF-CA)机制。在AudioCaps数据集上进行的大量实验表明,AudioGAN在实现最先进性能的同时,使用的参数减少了90%,运行速度提升了20倍,可在不到一秒的时间内合成音频。这些结果确立了AudioGAN作为一种实用且强大的实时TTA解决方案的地位。

0
下载
关闭预览

相关内容

【CVPR2024】ViewDiff: 3D一致的图像生成与文本到图像模型
专知会员服务
30+阅读 · 2024年3月10日
【AAAI2021】“可瘦身”的生成式对抗网络
专知会员服务
13+阅读 · 2020年12月12日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员