The automatic speaker verification spoofing (ASVspoof) challenge series is crucial for enhancing the spoofing consideration and the countermeasures growth. Although the recent ASVspoof 2019 validation results indicate the significant capability to identify most attacks, the model's recognition effect is still poor for some attacks. This paper presents the Online Hard Example Mining (OHEM) algorithm for detecting unknown voice spoofing attacks. The OHEM is utilized to overcome the imbalance between simple and hard samples in the dataset. The presented system provides an equal error rate (EER) of 0.77% on the ASVspoof 2019 Challenge logical access scenario's evaluation set.
翻译:自动扬声器核查(ASVspoof)挑战系列对于加强模拟考虑和反措施增长至关重要。虽然最近的2019年ASVspoof验证结果显示,确定大多数攻击的重大能力,但模型的识别效果对于某些攻击来说仍然差强人意。本文介绍了用于探测未知声音潜射攻击的在线硬体采矿算法。OHEM被用来克服数据集中简单和硬样品之间的不平衡。在2019年挑战逻辑访问假设评价集中,提供的系统提供了相等的误差率(ER)为0.77 % 。