Sparse high-dimensional linear regression is a central problem in statistics, where the goal is often variable selection and/or coefficient estimation. We propose a mean-field variational Bayes approximation for sparse regression with spike-and-slab Laplace priors that replaces the standard Kullback-Leibler (KL) divergence objective with the Rényi's $α$ divergence: a one-parameter generalization of KL divergence indexed by $α\in (0, \infty) \setminus \{1\}$ that allows flexibility between zero-forcing and mass-covering behavior. We derive coordinate ascent variational inference (CAVI) updates via a second-order delta method and develop a stochastic variational inference algorithm based on a Monte Carlo surrogate Rényi lower bound. In simulations, our two methods perform comparably to state-of-the-art Bayesian variable selection procedures across a range of sparsity configurations and $α$ values for both variable selection and estimation, and our numerical results illustrate how different choices of $α$ can be advantageous in different sparsity configurations.
翻译:稀疏高维线性回归是统计学中的核心问题,其目标通常是变量选择和/或系数估计。我们提出了一种针对尖峰-平板拉普拉斯先验稀疏回归的均值场变分贝叶斯近似方法,该方法用Rényi $α$散度替代了标准的Kullback-Leibler(KL)散度目标函数:Rényi $α$散度是由$α\in (0, \infty) \setminus \{1\}$参数化的一类KL散度广义形式,能够在零强制与质量覆盖行为之间提供灵活性。我们通过二阶Delta方法推导了坐标上升变分推断(CAVI)的更新规则,并基于蒙特卡洛代理Rényi下界开发了一种随机变分推断算法。在模拟实验中,我们的两种方法在变量选择和估计方面,在一系列稀疏性配置和$α$取值下,均与最先进的贝叶斯变量选择方法表现相当;数值结果进一步说明了在不同稀疏性配置下选择不同的$α$值可能带来的优势。