Let the costs $C(i,j)$ for an instance of the Asymmetric Traveling Salesperson Problem (ATSP) be independent copies of a non-negative random variable $C$ from a class of distributions that include the uniform $[0,1]$ distribution and the exponential mean 1 distribution with mean 1. We describe an algorithm that solves ATSP exactly in time $e^{\log^{2+o(1)}n}$, w.h.p.
翻译:设非对称旅行商问题(ATSP)实例中的成本$C(i,j)$为来自一类分布的非负随机变量$C$的独立副本,该类分布包括均匀分布$[0,1]$和均值为1的指数分布。我们描述了一种算法,能以高概率在$e^{\\log^{2+o(1)}n}$时间内精确求解ATSP。