Autonomy in robot-assisted surgery is essential to reduce surgeons' cognitive load and eventually improve the overall surgical outcome. A key requirement for autonomy in a safety-critical scenario as surgery lies in the generation of interpretable plans that rely on expert knowledge. Moreover, the Autonomous Robotic Surgical System (ARSS) must be able to reason on the dynamic and unpredictable anatomical environment, and quickly adapt the surgical plan in case of unexpected situations. In this paper, we present a modular Framework for Robot-Assisted Surgery (FRAS) in deformable anatomical environments. Our framework integrates a logic module for task-level interpretable reasoning, a biomechanical simulation that complements data from real sensors, and a situation awareness module for context interpretation. The framework performance is evaluated on simulated soft tissue retraction, a common surgical task to remove the tissue hiding a region of interest. Results show that the framework has the adaptability required to successfully accomplish the task, handling dynamic environmental conditions and possible failures, while guaranteeing the computational efficiency required in a real surgical scenario. The framework is made publicly available.
翻译:机器人辅助外科手术的自主性对于减少外科外科医生的认知负荷并最终改善总体外科手术结果至关重要。在安全危急情况下,由于外科手术的自主性要求在于生成依赖专家知识的可解释计划。此外,自主机器人外科手术系统(ARSS)必须能够根据动态和不可预测的解剖环境进行解释,并在出现意外情况时迅速调整外科手术计划。在本文件中,我们提出了一个在可变解形解剖环境中机器人辅助外科手术(FRAS)模块框架。我们的框架包含一个任务层面可解释推理逻辑模块,一个生物机械模拟模块,以补充来自真实传感器的数据,以及一个背景解释的情景意识模块。框架性能评估的是模拟软组织回转,这是消除隐藏着兴趣地区的组织的共同外科任务。结果显示,框架具有成功完成任务、处理动态环境条件和可能的失败所需的适应性,同时保证真实外科手术情景所需的计算效率。框架可以公开提供。