Gaussian Processes (GP) is a staple in the toolkit of a spatial statistician. Well-documented computing roadblocks in the analysis of large geospatial datasets using Gaussian Processes have now been successfully mitigated via several recent statistical innovations. Nearest Neighbor Gaussian Processes (NNGP) has emerged as one of the leading candidates for such massive-scale geospatial analysis owing to their empirical success. This article reviews the connection of NNGP to sparse Cholesky factors of the spatial precision (inverse-covariance) matrices. Focus of the review is on these sparse Cholesky matrices which are versatile and have recently found many diverse applications beyond the primary usage of NNGP for fast parameter estimation and prediction in the spatial (generalized) linear models. In particular, we discuss applications of sparse NNGP Cholesky matrices to address multifaceted computational issues in spatial bootstrapping, simulation of large-scale realizations of Gaussian random fields, and extensions to non-parametric mean function estimation of a Gaussian Process using Random Forests. We also review a sparse-Cholesky-based model for areal (geographically-aggregated) data that addresses interpretability issues of existing areal models. Finally, we highlight some yet-to-be-addressed issues of such sparse Cholesky approximations that warrants further research.


翻译:高斯进程(GP)是空间统计家工具包中的主机。 使用高斯进程分析大型地理空间数据集的有详细记录的计算路障现已通过最近的一些统计创新而成功减少。 近邻高斯进程(NNGP)因其成功的经验而成为这种大规模地理空间分析的主要候选人之一。 文章回顾了NNGP与空间精确度(逆差)矩阵中稀疏的Cholesky因素的连接。 审查的焦点是这些稀疏的Choolesky矩阵,它们具有多种功能,而且最近发现除了NNGP在空间(一般化)线性模型中主要用于快速参数估计和预测之外,还发现了许多不同的应用。 特别是,我们讨论了NNGP Choolesky矩阵在空间轨迹中解决多方面计算问题的应用,模拟高斯随机场的大规模实现情况,以及利用随机森林扩展高斯进程的非对非对等值功能的估计。 我们还审查了空空空基矩阵矩阵模型在空间(广度)线性模型的主要用途应用,这是目前对空基空间(Slogyal)排序的模型的解释。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
42+阅读 · 2020年12月18日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
轻量attention模块:Spatial Group-wise Enhance
极市平台
15+阅读 · 2019年7月3日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2022年1月20日
VIP会员
相关资讯
轻量attention模块:Spatial Group-wise Enhance
极市平台
15+阅读 · 2019年7月3日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员