Recent advances in bidirectional EV charging and discharging systems have spurred interest in workplace applications. However, real-world deployments face various dynamic factors, such as fluctuating electricity prices and uncertain EV departure times, that hinder effective energy management. To address these issues and minimize building electricity costs while meeting EV charging requirements, we design a hierarchical multi-agent structure in which a high-level agent coordinates overall charge or discharge decisions based on real-time pricing, while multiple low-level agents manage individual power level accordingly. For uncertain EV departure times, we propose a novel uncertainty-aware critic augmentation mechanism for low-level agents that improves the evaluation of power-level decisions and ensures robust control under such uncertainty. Building upon these two key designs, we introduce HUCA, a real-time charging control framework that coordinates energy supply among the building and EVs. Experiments on real-world electricity datasets show that HUCA significantly reduces electricity costs and maintains competitive performance in meeting EV charging requirements under both simulated certain and uncertain departure scenarios. The results further highlight the importance of hierarchical control and the proposed critic augmentation under the uncertain departure scenario. A case study illustrates HUCA's capability to allocate energy between the building and EVs in real time, underscoring its potential for practical use.


翻译:近年来,双向电动汽车充放电系统的进展激发了其在工作场所应用中的研究兴趣。然而,实际部署面临多种动态因素,例如波动的电价和不确定的电动汽车离场时间,这些因素阻碍了有效的能源管理。为解决这些问题,在满足电动汽车充电需求的同时最小化建筑用电成本,我们设计了一种分层多智能体结构:一个高层智能体基于实时电价协调总体充放电决策,而多个低层智能体则相应地管理个体功率水平。针对不确定的电动汽车离场时间,我们为低层智能体提出了一种新颖的不确定性感知评论家增强机制,该机制改进了对功率水平决策的评估,并确保在此类不确定性下的鲁棒控制。基于这两项关键设计,我们提出了HUCA,一个协调建筑与电动汽车之间能源供应的实时充电控制框架。在真实世界电力数据集上的实验表明,无论在模拟的确定还是不确定离场场景下,HUCA均能显著降低用电成本,并在满足电动汽车充电需求方面保持有竞争力的性能。结果进一步突显了在不确定离场场景下分层控制及所提评论家增强机制的重要性。一项案例研究展示了HUCA实时在建筑与电动汽车之间分配能源的能力,印证了其实际应用的潜力。

0
下载
关闭预览

相关内容

汽车,本来是指汽油车,在中国泛指四轮内燃机车,包括汽油车,柴油车,电动车,混动车。汽车由德国人发明,德语词为Automobil,这个词由两部分构成,分别是Auto和Mobil,意为自动运行车,或称为自动车。
Distributional Soft Actor-Critic (DSAC)强化学习算法的设计与验证
深度强化学习实验室
19+阅读 · 2020年8月11日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
VIP会员
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员