Reversible computing basically means computation with less or not at all electrical power. Since the standard binary gates are not usually reversible we use the Fredkin gate in order to achieve reversibility. An algorithm for designing reversible digital circuits is described in this paper. The algorithm is based on Multi Expression Programming (MEP), a Genetic Programming variant with a linear representation of individuals. The case of digital circuits for the even-parity problem is investigated. Numerical experiments show that the MEP-based algorithm is able to easily design reversible digital circuits for up to the even-8-parity problem.
翻译:翻转计算基本上意味着用较少或完全没有电力进行计算。由于标准的二进制门通常无法逆向。由于标准二进制门是不可逆的,我们使用Fredkin门来实现可逆性。本文介绍了设计可逆数字电路的算法。算法基于多表达式程序(MEP),一个具有个人线性代表的遗传方案变体。调查了数字电路处理均等问题的案例。数字实验显示,基于MEP的算法能够很容易地设计可逆性数字电路,直到达到平均8平等问题为止。