In this letter, a novel framework is proposed for analyzing data offloading in a multi-access edge computing system. Specifically, a two-phase algorithm, is proposed, including two key phases: user association phase and task offloading phase. In the first phase, a ruin theory-based approach is developed to obtain the users association considering the users' transmission reliability. Meanwhile, in the second phase, an optimization-based algorithm is used to optimize the data offloading process. In particular, ruin theory is used to manage the user association phase, and a ruin probability-based preference profile is considered to control the priority of proposing users. Here, ruin probability is derived by the surplus buffer space of each edge node at each time slot. Giving the association results, an optimization problem is formulated to optimize the amount of offloaded data aiming at minimizing the energy consumption of users. Simulation results show that the developed solutions guarantee system reliability under a tolerable value of surplus buffer size and minimize the total energy consumption of all users.
翻译:在这封信中,为分析多存取边端计算系统中的数据卸载,提出了一个新的框架,具体地说,提出了两个阶段的算法,包括两个关键阶段:用户关联阶段和任务卸载阶段。在第一阶段,开发了以废理论为基础的方法,以获得用户协会,同时考虑到用户传输的可靠性。同时,在第二阶段,使用了以优化为基础的算法来优化数据卸载过程。特别是,利用废理论来管理用户关联阶段,并审议了以废概率为基础的偏好剖面来控制推荐用户的优先事项。在这里,每个边缘节点在每个时间档的剩余缓冲空间中产生废机率。给协会带来的结果是,形成了一个优化问题,优化了卸载数据的数量,目的是最大限度地减少用户的能源消耗。模拟结果表明,开发的解决方案保证了系统可靠性,保证了超存缓冲规模的可承受价值,并最大限度地减少所有用户的能源消耗总量。