Cricket is the second most popular sport globally, commanding a massive following of over 2.5 billion fans globally. Enthusiasts and analysts frequently seek advanced statistical insights, such as long-term historical performance trends or complex player comparisons, that are often unavailable through standard web searches. While Large Language Models (LLMs) have advanced significantly in Text-to-SQL tasks, their capability to handle the domain-specific nuances, complex schema variations, and multilingual requirements inherent to sports analytics remains under-explored. To investigate this potential capability gap, we present CricBench, a comprehensive benchmark suite for evaluating LLMs on specialized cricket data. To curate a "Gold Standard" dataset, we collaborate with domain experts in cricket and SQL to manually author complex queries, ensuring logical correctness. Recognizing linguistic diversity, we construct the benchmark in both English and Hindi, establishing a framework that is open for further extension to other regional languages. We evaluate six state-of-the-art models, including GPT-4o, Claude 3.7 Sonnet, and open-source models, using a strict evaluation protocol. Our results reveal that high performance on general benchmarks does not guarantee success in specialized domains. While the open-weights reasoning model DeepSeek R1 achieves state-of-the-art performance (50.6%), surpassing proprietary giants like Claude 3.7 Sonnet (47.7%) and GPT-4o (33.7%), it still exhibits a significant accuracy drop when moving from general benchmarks (BIRD) to CricBench. Furthermore, we observe that code-mixed Hindi queries frequently yield parity or higher accuracy compared to English, challenging the assumption that English is the optimal prompt language for specialized SQL tasks.
翻译:板球是全球第二大受欢迎的运动,在全球范围内拥有超过25亿的庞大粉丝群体。爱好者和分析师经常寻求高级的统计洞察,例如长期的历史表现趋势或复杂的球员比较,而这些信息通常无法通过标准网络搜索获得。尽管大语言模型在文本到SQL任务上取得了显著进展,但其处理体育分析领域所固有的领域特定细微差别、复杂模式变化和多语言需求的能力仍未得到充分探索。为了研究这一潜在的能力差距,我们提出了CricBench,一个用于评估大语言模型在专业板球数据上表现的综合性基准套件。为了构建一个"黄金标准"数据集,我们与板球和SQL领域的专家合作,手动编写复杂查询,确保逻辑正确性。考虑到语言的多样性,我们以英语和印地语两种语言构建了该基准,建立了一个可进一步扩展到其他地区语言的框架。我们使用严格的评估协议评估了六个最先进的模型,包括GPT-4o、Claude 3.7 Sonnet以及开源模型。我们的结果表明,在通用基准上的高性能并不能保证在专业领域的成功。虽然开源推理模型DeepSeek R1取得了最先进的性能(50.6%),超越了Claude 3.7 Sonnet(47.7%)和GPT-4o(33.7%)等专有巨头,但从通用基准(BIRD)迁移到CricBench时,其准确性仍表现出显著下降。此外,我们观察到,与英语相比,混合编码的印地语查询经常产生同等甚至更高的准确性,这挑战了英语是专业SQL任务最佳提示语言的假设。