For the numerical simulation of time-dependent problems, recent works suggest the use of a time marching scheme based on a tensorial decomposition of the time axis. This time-separated representation is straightforwardly introduced in the framework of the Proper Generalized Decomposition (PGD). The time coordinate is transformed into a multi-dimensional time through new separated coordinates, the micro and the macro times. From a physical viewpoint, the time evolution of all the quantities involved in the problem can be followed along two time scales, the fast one (micro-scale) and the slow one (macro-scale). In this paper, the method is applied to compute the quasi-static response of an elasto-plastic structure under cyclic loadings. The study shows the existence of a physically consistent temporal decomposition in computational cyclic plasticity. Such micro-macro characterization may be particularly appealing in high-cycle loading analyses, such as aging and fatigue, addressed in a future work in progress.
翻译:----
循环弹塑性问题中的时间多尺度分解
翻译摘要:
对于时变问题的数值模拟,最近的研究建议使用基于时间轴的张量分解的时间 marching 方案。这种时间分离的表示可以轻松地引入到 Proper Generalized Decomposition(PGD)框架中。通过新的分离坐标,即微观时间和宏观时间,时间坐标被转化为多维时间。从物理角度来看,所涉及问题中所有数量的时间演化可以沿着两个时间尺度,即快速尺度(微观尺度)和慢速尺度(宏观尺度),进行跟踪。在本文中,该方法被应用于计算弹塑性结构在循环载荷下的准静态响应。该研究显示出计算循环塑性中的物理一致的时间分解的存在。这种微观-宏观特性在高循环载荷分析中可能尤为有吸引力,例如在进行老化和疲劳方面的工作中,这是一项正在进行的未来工作。