Emergent processes in complex systems such as cellular automata can perform computations of increasing complexity, and could possibly lead to artificial evolution. Such a feat would require scaling up current simulation sizes to allow for enough computational capacity. Understanding complex computations happening in cellular automata and other systems capable of emergence poses many challenges, especially in large-scale systems. We propose methods for coarse-graining cellular automata based on frequency analysis of cell states, clustering and autoencoders. These innovative techniques facilitate the discovery of large-scale structure formation and complexity analysis in those systems. They emphasize interesting behaviors in elementary cellular automata while filtering out background patterns. Moreover, our methods reduce large 2D automata to smaller sizes and enable identifying systems that behave interestingly at multiple scales.
翻译:蜂窝自动数据等复杂系统中的新兴过程可以进行日益复杂的计算,并可能导致人为的演化。这样的成就需要扩大目前的模拟规模,以便有足够的计算能力。了解蜂窝自动数据和其他能够产生的系统中发生的复杂计算带来了许多挑战,特别是在大型系统中。我们根据对细胞状态、集群和自动编码器的频率分析,提出了粗粒细胞自动数据的方法。这些创新技术有助于在这些系统中发现大型结构形成和复杂分析。它们强调初级蜂窝自动数据中的有趣行为,同时过滤背景模式。此外,我们的方法将大型2D自动数据缩小到较小规模,并能够识别在多个尺度上表现有趣的系统。