This paper introduces SGNMT, our experimental platform for machine translation research. SGNMT provides a generic interface to neural and symbolic scoring modules (predictors) with left-to-right semantic such as translation models like NMT, language models, translation lattices, $n$-best lists or other kinds of scores and constraints. Predictors can be combined with other predictors to form complex decoding tasks. SGNMT implements a number of search strategies for traversing the space spanned by the predictors which are appropriate for different predictor constellations. Adding new predictors or decoding strategies is particularly easy, making it a very efficient tool for prototyping new research ideas. SGNMT is actively being used by students in the MPhil program in Machine Learning, Speech and Language Technology at the University of Cambridge for course work and theses, as well as for most of the research work in our group.
翻译:本文介绍了我们的机器翻译研究实验平台SGNMT。 SGNMT为神经和象征性评分模块(指标)提供了一个通用界面,这些模块具有左对右语义学模型,如翻译模型,如NMT、语言模型、翻译拉特克、美元最佳名单或其他评分和制约因素等。预测器可以与其他预测器结合,形成复杂的解码任务。SGNMT实施了一系列搜索战略,以探索预测器所覆盖的空间,适合不同预测星座。添加新的预测器或解码战略特别容易,使得它成为一个非常有效的工具,用于新研究思想的原型。剑桥大学的MPhil机械学习、语言和语言技术方案的学生正在积极使用SGNMT,用于课程和这些工程,以及我们小组的大多数研究工作。