SGNMT is a decoding platform for machine translation which allows paring various modern neural models of translation with different kinds of constraints and symbolic models. In this paper, we describe three use cases in which SGNMT is currently playing an active role: (1) teaching as SGNMT is being used for course work and student theses in the MPhil in Machine Learning, Speech and Language Technology at the University of Cambridge, (2) research as most of the research work of the Cambridge MT group is based on SGNMT, and (3) technology transfer as we show how SGNMT is helping to transfer research findings from the laboratory to the industry, eg. into a product of SDL plc.

3
下载
关闭预览

相关内容

机器翻译(Machine Translation)涵盖计算语言学和语言工程的所有分支,包含多语言方面。特色论文涵盖理论,描述或计算方面的任何下列主题:双语和多语语料库的编写和使用,计算机辅助语言教学,非罗马字符集的计算含义,连接主义翻译方法,对比语言学等。 官网地址:http://dblp.uni-trier.de/db/journals/mt/

Machine translation systems require semantic knowledge and grammatical understanding. Neural machine translation (NMT) systems often assume this information is captured by an attention mechanism and a decoder that ensures fluency. Recent work has shown that incorporating explicit syntax alleviates the burden of modeling both types of knowledge. However, requiring parses is expensive and does not explore the question of what syntax a model needs during translation. To address both of these issues we introduce a model that simultaneously translates while inducing dependency trees. In this way, we leverage the benefits of structure while investigating what syntax NMT must induce to maximize performance. We show that our dependency trees are 1. language pair dependent and 2. improve translation quality.

0
3
下载
预览

The process of translation is ambiguous, in that there are typically many valid trans- lations for a given sentence. This gives rise to significant variation in parallel cor- pora, however, most current models of machine translation do not account for this variation, instead treating the prob- lem as a deterministic process. To this end, we present a deep generative model of machine translation which incorporates a chain of latent variables, in order to ac- count for local lexical and syntactic varia- tion in parallel corpora. We provide an in- depth analysis of the pitfalls encountered in variational inference for training deep generative models. Experiments on sev- eral different language pairs demonstrate that the model consistently improves over strong baselines.

0
5
下载
预览

OpenNMT is an open-source toolkit for neural machine translation (NMT). The system prioritizes efficiency, modularity, and extensibility with the goal of supporting NMT research into model architectures, feature representations, and source modalities, while maintaining competitive performance and reasonable training requirements. The toolkit consists of modeling and translation support, as well as detailed pedagogical documentation about the underlying techniques. OpenNMT has been used in several production MT systems, modified for numerous research papers, and is implemented across several deep learning frameworks.

0
3
下载
预览

In NMT, words are sometimes dropped from the source or generated repeatedly in the translation. We explore novel strategies to address the coverage problem that change only the attention transformation. Our approach allocates fertilities to source words, used to bound the attention each word can receive. We experiment with various sparse and constrained attention transformations and propose a new one, constrained sparsemax, shown to be differentiable and sparse. Empirical evaluation is provided in three languages pairs.

0
4
下载
预览

Machine translation has recently achieved impressive performance thanks to recent advances in deep learning and the availability of large-scale parallel corpora. There have been numerous attempts to extend these successes to low-resource language pairs, yet requiring tens of thousands of parallel sentences. In this work, we take this research direction to the extreme and investigate whether it is possible to learn to translate even without any parallel data. We propose a model that takes sentences from monolingual corpora in two different languages and maps them into the same latent space. By learning to reconstruct in both languages from this shared feature space, the model effectively learns to translate without using any labeled data. We demonstrate our model on two widely used datasets and two language pairs, reporting BLEU scores of 32.8 and 15.1 on the Multi30k and WMT English-French datasets, without using even a single parallel sentence at training time.

0
3
下载
预览

While most machine translation systems to date are trained on large parallel corpora, humans learn language in a different way: by being grounded in an environment and interacting with other humans. In this work, we propose a communication game where two agents, native speakers of their own respective languages, jointly learn to solve a visual referential task. We find that the ability to understand and translate a foreign language emerges as a means to achieve shared goals. The emergent translation is interactive and multimodal, and crucially does not require parallel corpora, but only monolingual, independent text and corresponding images. Our proposed translation model achieves this by grounding the source and target languages into a shared visual modality, and outperforms several baselines on both word-level and sentence-level translation tasks. Furthermore, we show that agents in a multilingual community learn to translate better and faster than in a bilingual communication setting.

0
3
下载
预览

This paper describes XNMT, the eXtensible Neural Machine Translation toolkit. XNMT distin- guishes itself from other open-source NMT toolkits by its focus on modular code design, with the purpose of enabling fast iteration in research and replicable, reliable results. In this paper we describe the design of XNMT and its experiment configuration system, and demonstrate its utility on the tasks of machine translation, speech recognition, and multi-tasked machine translation/parsing. XNMT is available open-source at https://github.com/neulab/xnmt

0
3
下载
预览

Character-based neural machine translation (NMT) models alleviate out-of-vocabulary issues, learn morphology, and move us closer to completely end-to-end translation systems. Unfortunately, they are also very brittle and easily falter when presented with noisy data. In this paper, we confront NMT models with synthetic and natural sources of noise. We find that state-of-the-art models fail to translate even moderately noisy texts that humans have no trouble comprehending. We explore two approaches to increase model robustness: structure-invariant word representations and robust training on noisy texts. We find that a model based on a character convolutional neural network is able to simultaneously learn representations robust to multiple kinds of noise.

0
3
下载
预览

While end-to-end neural machine translation (NMT) has achieved notable success in the past years in translating a handful of resource-rich language pairs, it still suffers from the data scarcity problem for low-resource language pairs and domains. To tackle this problem, we propose an interactive multimodal framework for zero-resource neural machine translation. Instead of being passively exposed to large amounts of parallel corpora, our learners (implemented as encoder-decoder architecture) engage in cooperative image description games, and thus develop their own image captioning or neural machine translation model from the need to communicate in order to succeed at the game. Experimental results on the IAPR-TC12 and Multi30K datasets show that the proposed learning mechanism significantly improves over the state-of-the-art methods.

0
4
下载
预览

Partially inspired by successful applications of variational recurrent neural networks, we propose a novel variational recurrent neural machine translation (VRNMT) model in this paper. Different from the variational NMT, VRNMT introduces a series of latent random variables to model the translation procedure of a sentence in a generative way, instead of a single latent variable. Specifically, the latent random variables are included into the hidden states of the NMT decoder with elements from the variational autoencoder. In this way, these variables are recurrently generated, which enables them to further capture strong and complex dependencies among the output translations at different timesteps. In order to deal with the challenges in performing efficient posterior inference and large-scale training during the incorporation of latent variables, we build a neural posterior approximator, and equip it with a reparameterization technique to estimate the variational lower bound. Experiments on Chinese-English and English-German translation tasks demonstrate that the proposed model achieves significant improvements over both the conventional and variational NMT models.

0
5
下载
预览
小贴士
相关论文
Ke Tran,Yonatan Bisk
3+阅读 · 2018年5月28日
Philip Schulz,Wilker Aziz,Trevor Cohn
5+阅读 · 2018年5月28日
Guillaume Klein,Yoon Kim,Yuntian Deng,Vincent Nguyen,Jean Senellart,Alexander M. Rush
3+阅读 · 2018年5月28日
Chaitanya Malaviya,Pedro Ferreira,André F. T. Martins
4+阅读 · 2018年5月21日
Guillaume Lample,Alexis Conneau,Ludovic Denoyer,Marc'Aurelio Ranzato
3+阅读 · 2018年4月13日
Jason Lee,Kyunghyun Cho,Jason Weston,Douwe Kiela
3+阅读 · 2018年4月11日
Graham Neubig,Matthias Sperber,Xinyi Wang,Matthieu Felix,Austin Matthews,Sarguna Padmanabhan,Ye Qi,Devendra Singh Sachan,Philip Arthur,Pierre Godard,John Hewitt,Rachid Riad,Liming Wang
3+阅读 · 2018年3月1日
Yonatan Belinkov,Yonatan Bisk
3+阅读 · 2018年2月24日
Yun Chen,Yang Liu,Victor O. K. Li
4+阅读 · 2018年2月9日
Jinsong Su,Shan Wu,Deyi Xiong,Yaojie Lu,Xianpei Han,Biao Zhang
5+阅读 · 2018年1月16日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
15+阅读 · 2018年10月30日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
6+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
33+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
24+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
5+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
7+阅读 · 2015年7月1日
Top