With the progressive commoditization of modeling capabilities, data-centric AI recognizes that what happens before and after training becomes crucial for real-world deployments. Following the intuition behind Model Cards, we propose DAG Cards as a form of documentation encompassing the tenets of a data-centric point of view. We argue that Machine Learning pipelines (rather than models) are the most appropriate level of documentation for many practical use cases, and we share with the community an open implementation to generate cards from code.


翻译:随着建模能力的逐渐商品化,以数据为中心的AI认识到培训前后发生的事情对于现实世界的部署至关重要。根据模型卡背后的直觉,我们建议DAG卡作为包含以数据为中心的观点原则的文件形式。 我们认为机器学习管道(而不是模型)是许多实际使用案例最适当的文件水平,我们与社区分享从代码中生成卡的公开实施。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2020年11月26日
Arxiv
8+阅读 · 2020年10月7日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Arxiv
4+阅读 · 2018年5月14日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
3+阅读 · 2020年11月26日
Arxiv
8+阅读 · 2020年10月7日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Arxiv
4+阅读 · 2018年5月14日
Top
微信扫码咨询专知VIP会员