We prove some efficient inference results concerning estimation of a Ornstein-Uhlenbeck regression model, which is driven by a non-Gaussian stable Levy process and where the output process is observed at high-frequency over a fixed time period. Local asymptotics for the likelihood function is presented, followed by a way to construct an asymptotically efficient estimator through a suboptimal yet very simple preliminary estimator, which enables us to bypass not only numerical optimization of the likelihood function, but also the multiple-root problem.
翻译:在Ornstein-Uhlenbeck回归模型的估算方面,我们证明了一些有效的推论结果,该模型是由非加盟稳定的Levy进程驱动的,在固定的时期内高频观测输出过程。 展示了可能性函数的局部抑制因素,然后通过一个亚优但非常简单的初步估测器构建一个非现效的估测器,不仅可以绕过概率函数的数值优化,还可以绕过多根问题。