Blockchain is a distributed ledger that is decentralized, immutable, and transparent, which maintains a continuously growing list of transaction records ordered into blocks. As the core of blockchain, the consensus algorithm is an agreement to validate the correctness of blockchain transactions. For example, Bitcoin is a public blockchain where each node in Bitcoin uses the Proof of Work (PoW) algorithm to reach a consensus by competing to solve a puzzle. Unlike a public blockchain, a consortium blockchain is an enterprise-level blockchain that does not contend with the issues of creating a resource-saving global consensus protocol. This paper highilights several state-of-the art solutions in consensus algorithms for enterprise blockchain. For example, the HyperLedger by Linux Foundation includes implementing Practical Byzantine Fault Tolerance (PBFT) as the consensus algorithm. PBFT can tolerate a range of malicious nodes and reach consensus with quadratic complexity. Another consensus algorithm, HotStuff, implemented by Facebook's Libra project, has achieved linear complexity of the authenticator. This paper presents the operational mechanisms of these and other consensus protocols, and analyzes and compares their advantages and drawbacks.


翻译:块链是一个分散、 不可改变和透明的分布式分类账, 它维持着一个不断增长的、 以块块形式订购的交易记录列表。 作为块链的核心, 协商一致算法是验证块链交易正确性的协议。 例如, 比特币是一个公共块链。 比特币的每个节点都使用“ 工作证明” 算法来通过竞争解决一个难题来达成共识。 与公共块链不同的是, 财团块链是一个企业级的块链, 它与创建资源节省全球共识协议的问题没有争议。 本文高亮了企业块链协商一致算法中的若干最新艺术解决方案。 例如, Linux 基金会的超Ledger 将实施实用 Byzantine Fault Connication (PBFT) 作为共识算法。 PBFT 能够容忍一系列恶意节点, 并以四重复杂度达成共识。 另一个共识算法, 由Facebook 的 Libra 项目实施的 HotStuffe, 已经实现了验证器的线性复杂度。 。 本文展示了这些和其他共识协议的操作机制, 分析并比较其优势 。

0
下载
关闭预览

相关内容

区块链(Blockchain)是由节点参与的分布式数据库系统,它的特点是不可更改,不可伪造,也可以将其理解为账簿系统(ledger)。它是比特币的一个重要概念,完整比特币区块链的副本,记录了其代币(token)的每一笔交易。通过这些信息,我们可以找到每一个地址,在历史上任何一点所拥有的价值。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
IEEE | 顶级期刊IoTJ物联网专刊诚邀稿件
Call4Papers
7+阅读 · 2019年5月20日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年10月15日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
IEEE | 顶级期刊IoTJ物联网专刊诚邀稿件
Call4Papers
7+阅读 · 2019年5月20日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员