We consider the problem of partitioning a spectrum band into M channels of equal bandwidth, and then further assigning these M channels into P licensed channels and M-P unlicensed channels. Licensed channels can be accessed both for licensed and opportunistic use following a tiered structure which has a higher priority for licensed use. Unlicensed channels can be accessed only for opportunistic use. We address the following question in this paper. Given a market setup, what values of M and P maximize the net spectrum utilization of the spectrum band? While this problem is of fundamental nature, it is highly relevant practically, e.g., in the context of partitioning the recently proposed Citizens Broadband Radio Service band. If M is too high or too low, it may decrease spectrum utilization due to limited channel capacity or due to wastage of channel capacity, respectively. If P is too high (low), it will not incentivize the wireless operators who are primarily interested in unlicensed channels (licensed channels) to join the market. These tradeoffs are captured in our optimization problem which manifests itself as a two-stage Stackelberg game. We design an algorithm to solve the Stackelberg game and hence find the optimal M and P. The algorithm design also involves an efficient Monte Carlo integrator to evaluate the expected value of the involved random variables like spectrum utilization and operators' revenue. We also benchmark our algorithms using numerical simulations.
翻译:我们考虑将频谱带分割成带宽的M频道的问题,然后将这些M频道进一步分配到P许可的频道和M-P无许可证的频道。 许可的频道可以按照分层结构进入许可使用和机会使用渠道, 分层结构对许可证使用和机会使用具有更高的优先使用权。 允许的频道只能用于机会使用。 我们本文讨论下面的问题。 鉴于市场设置, M和P的值如何使频谱带的净频谱利用率最大化? 这个问题具有根本性质, 但它实际上具有高度相关性, 例如, 在最近提议的公民宽带广播服务带的分层中, 分层频道的分级和机会使用率都非常低。 如果P太高( 低), 只能访问无许可证的频道。 鉴于市场设置, M和 P 的值, 我们不会鼓励主要对无许可证频道( 许可的频道) 最感兴趣的无线操作员加入市场。 这些交易取自我们的优化问题, 其表现为两阶段的 Stackelberg 游戏。 如果Mkelberg 游戏太高或太低, 它可能会降低频谱段的使用,,,, 我们设计一个高效的算算算算算算出我们最高级的游戏的游戏的游戏, 我们的游戏也使用了Stakelcalbalbalbalball 。