Recent work done on traffic sign and traffic light detection focus on improving detection accuracy in complex scenarios, yet many fail to deliver real-time performance, specifically with limited computational resources. In this work, we propose a simple deep learning based end-to-end detection framework, which effectively tackles challenges inherent to traffic sign and traffic light detection such as small size, large number of classes and complex road scenarios. We optimize the detection models using TensorRT and integrate with Robot Operating System to deploy on an Nvidia Jetson AGX Xavier as our embedded device. The overall system achieves a high inference speed of 63 frames per second, demonstrating the capability of our system to perform in real-time. Furthermore, we introduce CeyRo, which is the first ever large-scale traffic sign and traffic light detection dataset for the Sri Lankan context. Our dataset consists of 7984 total images with 10176 traffic sign and traffic light instances covering 70 traffic sign and 5 traffic light classes. The images have a high resolution of 1920 x 1080 and capture a wide range of challenging road scenarios with different weather and lighting conditions. Our work is publicly available at https://github.com/oshadajay/CeyRo.
翻译:近期在交通标志和交通灯探测方面开展的工作侧重于提高复杂情景的探测准确性,但许多系统未能提供实时性能,特别是有限的计算资源。在这项工作中,我们建议建立一个简单的深层次学习的端到端检测框架,有效地应对交通标志和交通灯探测所固有的挑战,例如小型、大量班级和复杂的道路情景。我们优化了使用TensorRT的检测模型,并与机器人操作系统整合,将Nvidia Jetson AGXavier作为我们嵌入的装置。整个系统达到高度推导速度,每秒63个框架,显示我们系统实时运行的能力。此外,我们引入了CeyRo,这是斯里兰卡有史以来第一个大型交通标志和交通灯探测数据集。我们的数据集由7984个图像组成,共有10176个交通标志和交通灯台,覆盖70个交通标志和5个交通灯台。这些图像的分辨率高达1920 x 1080,并反映了具有不同天气和照明条件的具有挑战性的道路情景。我们的工作在https://github.orgay/hoadada。