This paper is a contribution to the Hate Speech and Offensive Content Identification in Indo-European Languages (HASOC) 2021 shared task. Social media today is a hotbed of toxic and hateful conversations, in various languages. Recent news reports have shown that current models struggle to automatically identify hate posted in minority languages. Therefore, efficiently curbing hate speech is a critical challenge and problem of interest. We present a multilingual architecture using state-of-the-art transformer language models to jointly learn hate and offensive speech detection across three languages namely, English, Hindi, and Marathi. On the provided testing corpora, we achieve Macro F1 scores of 0.7996, 0.7748, 0.8651 for sub-task 1A and 0.6268, 0.5603 during the fine-grained classification of sub-task 1B. These results show the efficacy of exploiting a multilingual training scheme.
翻译:本文是对2021年印度-欧洲语言中的仇恨言论和攻击性内容识别(HASOC)共同任务的贡献;今天的社交媒体是各种语言中有毒和仇恨性对话的温床;最近的新闻报道表明,当前模式在自动识别少数民族语言中张贴的仇恨情绪方面进行了斗争;因此,有效遏制仇恨言论是一项关键的挑战和关注问题;我们提出了一个多语种结构,利用最先进的变异语言模型,共同学习英语、印地语和马拉地语这三种语言的仇恨和攻击性言论检测;在所提供的测试中,我们在1A子任务和0.6268子任务分类1B中实现了0.799658651的F1分和0.5603分。这些结果表明利用多语种培训计划的效果。