Recent advances in generative modeling have demonstrated strong promise for high-quality point cloud upsampling. In this work, we present PUFM++, an enhanced flow-matching framework for reconstructing dense and accurate point clouds from sparse, noisy, and partial observations. PUFM++ improves flow matching along three key axes: (i) geometric fidelity, (ii) robustness to imperfect input, and (iii) consistency with downstream surface-based tasks. We introduce a two-stage flow-matching strategy that first learns a direct, straight-path flow from sparse inputs to dense targets, and then refines it using noise-perturbed samples to approximate the terminal marginal distribution better. To accelerate and stabilize inference, we propose a data-driven adaptive time scheduler that improves sampling efficiency based on interpolation behavior. We further impose on-manifold constraints during sampling to ensure that generated points remain aligned with the underlying surface. Finally, we incorporate a recurrent interface network~(RIN) to strengthen hierarchical feature interactions and boost reconstruction quality. Extensive experiments on synthetic benchmarks and real-world scans show that PUFM++ sets a new state of the art in point cloud upsampling, delivering superior visual fidelity and quantitative accuracy across a wide range of tasks. Code and pretrained models are publicly available at https://github.com/Holmes-Alan/Enhanced_PUFM.
翻译:生成建模的最新进展为高质量点云上采样展现了巨大潜力。本研究提出PUFM++,这是一种增强的流匹配框架,用于从稀疏、含噪且不完整的观测中重建稠密且精确的点云。PUFM++沿三个关键维度改进了流匹配:(i)几何保真度,(ii)对不完美输入的鲁棒性,以及(iii)与下游基于表面的任务的一致性。我们引入了一种两阶段流匹配策略:首先学习从稀疏输入到稠密目标的直接直线路径流,然后利用噪声扰动样本对其进行细化,以更好地近似终端边缘分布。为加速并稳定推理,我们提出了一种数据驱动的自适应时间调度器,基于插值行为提高采样效率。我们进一步在采样过程中施加流形约束,以确保生成的点与底层表面对齐。最后,我们引入了循环接口网络(RIN)以增强层次特征交互并提升重建质量。在合成基准和真实世界扫描数据上的大量实验表明,PUFM++在点云上采样任务中达到了新的最优水平,在广泛的任务范围内提供了卓越的视觉保真度和量化精度。代码与预训练模型公开于 https://github.com/Holmes-Alan/Enhanced_PUFM。