Explainable Artificial Intelligence (XAI) has experienced a significant growth over the last few years. This is due to the widespread application of machine learning, particularly deep learning, that has led to the development of highly accurate models but lack explainability and interpretability. A plethora of methods to tackle this problem have been proposed, developed and tested. This systematic review contributes to the body of knowledge by clustering these methods with a hierarchical classification system with four main clusters: review articles, theories and notions, methods and their evaluation. It also summarises the state-of-the-art in XAI and recommends future research directions.


翻译:过去几年来,可解释的人工智能(XAI)有了显著增长,这是因为机器学习的广泛应用,特别是深层学习,导致开发了非常准确的模式,但缺乏解释和可解释性,已经提出、制定和测试了大量解决这一问题的方法,通过将这些方法与四大类分级分类系统(审查文章、理论和概念、方法及其评价)相结合,系统审查有助于知识的形成,包括审查文章、理论和概念、方法及其评价,并总结了XAI的最新技术,建议了未来的研究方向。

1
下载
关闭预览

相关内容

【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
101+阅读 · 2020年10月13日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
122+阅读 · 2020年3月30日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Top
微信扫码咨询专知VIP会员