In recent years, a wide range of investment models have been created using artificial intelligence. Automatic trading by artificial intelligence can expand the range of trading methods, such as by conferring the ability to operate 24 hours a day and the ability to trade with high frequency. Automatic trading can also be expected to trade with more information than is available to humans if it can sufficiently consider past data. In this paper, we propose an investment agent based on a deep reinforcement learning model, which is an artificial intelligence model. The model considers the transaction costs involved in actual trading and creates a framework for trading over a long period of time so that it can make a large profit on a single trade. In doing so, it can maximize the profit while keeping transaction costs low. In addition, in consideration of actual operations, we use online learning so that the system can continue to learn by constantly updating the latest online data instead of learning with static data. This makes it possible to trade in non-stationary financial markets by always incorporating current market trend information.


翻译:近年来,利用人工智能创建了广泛的投资模式; 人工智能自动交易可以扩大贸易方法的范围,例如赋予每天24小时运作的能力和高频交易的能力; 如果能够充分考虑过去的数据,也可以期望自动交易能够以比人类可获得的信息更多的信息进行交易; 在本文中,我们提议以深强化学习模式为基础建立一个投资代理机构,这是一个人工智能模式; 模型考虑实际交易所涉及的交易成本,并建立一个长期交易框架,使其能够在单项交易中获取大量利润; 这样做,它可以最大限度地扩大利润,同时降低交易成本; 此外,考虑到实际操作,我们利用在线学习,以便通过不断更新最新在线数据,而不是用静态数据学习,使系统能够继续学习。 这使得能够通过始终纳入当前市场趋势信息的方式在非静止金融市场进行交易。

1
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自动特征工程开源框架
机器学习研究会
17+阅读 · 2017年11月7日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月6日
Compression of Deep Learning Models for Text: A Survey
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自动特征工程开源框架
机器学习研究会
17+阅读 · 2017年11月7日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员