We study the excess risk evaluation of classical penalized empirical risk minimization (ERM) with Bregman losses. We show that by leveraging the idea of wild refitting, one can efficiently upper bound the excess risk through the so-called "wild optimism," without relying on the global structure of the underlying function class. This property makes our approach inherently model-free. Unlike conventional analysis, our framework operates with just one dataset and black-box access to the training procedure. The method involves randomized Rademacher symmetrization and constructing artificially modified outputs by perturbation in the derivative space with appropriate scaling, upon which we retrain a second predictor for excess risk estimation. We establish high-probability performance guarantees both under the fixed design setting and the random design setting, demonstrating that wild refitting under Bregman losses, with an appropriately chosen wild noise scale, yields a valid upper bound on the excess risk. Thus, our work is promising for theoretically evaluating modern opaque ML models, such as deep neural networks and generative models, where the function class is too complex for classical learning theory and empirical process techniques.
 翻译:暂无翻译