Scaling large models with long sequences across applications like language generation, video generation and multimodal tasks requires efficient sequence parallelism. However, existing sequence parallelism methods all assume a single sequence dimension and fail to adapt to multi-dimensional transformer architectures that perform attention calculations across different dimensions. This paper introduces Dynamic Sequence Parallelism (DSP), a novel approach to enable efficient sequence parallelism for multi-dimensional transformer models. The key idea is to dynamically switch the parallelism dimension according to the current computation stage, leveraging the potential characteristics of multi-dimensional attention. This dynamic dimension switching allows sequence parallelism with minimal communication overhead compared to applying traditional single-dimension parallelism to multi-dimensional models. Experiments show DSP improves end-to-end throughput by 42.0% to 216.8% over prior sequence parallelism methods.
翻译:暂无翻译