With increased frequency and intensity due to climate change, wildfires have become a growing global concern. This creates severe challenges for fire and emergency services as well as communities in the wildland-urban interface (WUI). To reduce wildfire risk and enhance the safety of WUI communities, improving our understanding of wildfire evacuation is a pressing need. To this end, this study proposes a new methodology to analyze human behavior during wildfires by leveraging a large-scale GPS dataset. This methodology includes a home-location inference algorithm and an evacuation-behavior inference algorithm, to systematically identify different groups of wildfire evacuees (i.e., self-evacuee, shadow evacuee, evacuee under warning, and ordered evacuee). We applied the methodology to the 2019 Kincade Fire in Sonoma County, CA. We found that among all groups of evacuees, self-evacuees and shadow evacuees accounted for more than half of the evacuees during the Kincade Fire. The results also show that inside of the evacuation warning/order zones, the total evacuation compliance rate was around 46% among all the categorized people. The findings of this study can be used by emergency managers and planners to better target public outreach campaigns, training protocols, and emergency communication strategies to prepare WUI households for future wildfire events.
翻译:随着气候变化的频率和强度的提高,野火已成为全球日益关注的一个问题,这给火灾和紧急服务以及野地-城市交界点的社区带来了严重挑战。为了减少野火风险,加强野火风险,加强世界火联合组织社区的安全,我们迫切需要提高对野火疏散的理解。为此,本研究报告提出一种新的方法,通过利用大规模全球定位系统数据集分析野火期间人类行为。这一方法包括家庭定位推导算法和疏散-行为推断算法,以系统确定野火疏散人员的不同群体(即自疏散人员、影子疏散人员、处于警告之下的疏散人员以及接到疏散命令的疏散人员)。我们采用了这种方法,在加利福尼亚州索诺马州2019年金卡德火灾中,我们发现在野火中的所有撤离人员、自疏散人员和影子疏散人员群体中,超过疏散人员的一半是疏散人员。结果还表明,在疏散预警/指挥区内,疏散人员、影子疏散人员、被疏散人员、被疏散人员以及被命令撤离者等群体中,对紧急救援行动进行分类的遵守率在46个社区中,所有公共规划人员进行更好的培训。