A pile-scramble shuffle is one of the most effective shuffles in card-based cryptography. Indeed, many card-based protocols are constructed from pile-scramble shuffles. This article aims to study the power of pile-scramble shuffles. In particular, for any directed graph $G$, we introduce a new protocol called "a graph shuffle protocol for $G$", and show that it can be implemented by using pile-scramble shuffles only. Our proposed protocol requires $2(n+m)$ cards, where $n$ and $m$ are the numbers of vertices and edges of $G$, respectively. The number of pile-scramble shuffles is $k+1$, where $1 \leq k \leq n$ is the number of distinct degrees of vertices of $G$. As an application, a random cut for $n$ cards, which is also an important shuffle, can be realized by $3n$ cards and two pile-scramble shuffles.
翻译:堆叠碎屑是基于纸牌加密法中最有效的洗牌。 事实上, 许多基于纸牌的洗牌程序都是用堆叠碎屑的洗牌制作的。 文章的目的是研究堆叠碎屑洗牌的功率。 特别是, 对于任何方向图形$G$, 我们引入了一个新的协议, 名为“ $G$ 的图形洗牌协议 ”, 并显示它可以通过只使用堆叠碎屑洗牌来实施。 我们提议的协议需要2美元( n+m) 的卡, 其中美元和 $m分别是$G$的悬盘和边缘数。 堆叠碎屑洗牌的数量是 $k+1, 其中1 $\ leq k\leq n$ 是1 leq k\leq$ 不同程度的悬盘数 $G$。 作为应用程序, 美元卡的随机切片, 也是一个重要的洗牌, 可以通过 $ncard 和 2 shall shle shle 来实现。