The rapid progress of photorealistic synthesis techniques has reached a critical point where the boundary between real and manipulated images starts to blur. Recently, a mega-scale deep face forgery dataset, ForgeryNet which comprised of 2.9 million images and 221,247 videos has been released. It is by far the largest publicly available in terms of data-scale, manipulations (7 image-level approaches, 8 video-level approaches), perturbations (36 independent and more mixed perturbations), and annotations (6.3 million classification labels, 2.9 million manipulated area annotations, and 221,247 temporal forgery segment labels). This paper reports methods and results in the ForgeryNet - Face Forgery Analysis Challenge 2021, which employs the ForgeryNet benchmark. The model evaluation is conducted offline on the private test set. A total of 186 participants registered for the competition, and 11 teams made valid submissions. We will analyze the top-ranked solutions and present some discussion on future work directions.
翻译:摄影现实合成技术的快速进展已经到了一个临界点,真实图像和被操纵图像之间的界限开始模糊不清。最近,一个大型的深面伪造数据集、由290万图像和221 247个视频组成的伪造网络已经发布,这是迄今为止在数据规模、操纵(7个图像级方法、8个视频级方法)、扰动(36个独立和更加混合的扰动)和说明(630万个分类标签、290万被操纵区域说明和221 247个临时伪造部分标签)方面最大的公开数字。本文报告了使用伪造网络基准的ForgeryNet -- -- 面对面伪造分析挑战(2021年)的方法和结果。模型评价是在私人测试集上进行的,共有186名登记参加竞争的参与者和11个团队提交了有效文件。我们将分析最高级的解决方案,并就未来工作方向提出一些讨论。