In knowledge graph embedding, the theoretical relationship between the softmax cross-entropy and negative sampling loss functions has not been investigated. This makes it difficult to fairly compare the results of the two different loss functions. We attempted to solve this problem by using the Bregman divergence to provide a unified interpretation of the softmax cross-entropy and negative sampling loss functions. Under this interpretation, we can derive theoretical findings for fair comparison. Experimental results on the FB15k-237 and WN18RR datasets show that the theoretical findings are valid in practical settings.


翻译:在知识图嵌入中,尚未调查软成体交叉热带和负抽样损失功能之间的理论关系,因此难以公平比较两种不同的损失功能的结果。我们试图通过使用布雷格曼差异来统一解释软成体交叉热带和负抽样损失功能来解决这个问题。根据这种解释,我们可以得出理论结论,以便进行公平的比较。FB15k-237和WN18RR数据集的实验结果显示,理论结论在实际环境中是有效的。

0
下载
关闭预览

相关内容

【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
43+阅读 · 2020年11月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Logic Rules Powered Knowledge Graph Embedding
Arxiv
7+阅读 · 2019年3月9日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员