Simple binary-state coordination models are widely used to study collective socio-economic phenomena such as the spread of innovations or the adoption of products on social networks. The common trait of these systems is the occurrence of large-scale coordination events taking place abruptly, in the form of a cascade process, as a consequence of small perturbations of an apparently stable state. The conditions for the occurrence of cascade instabilities have been largely analysed in the literature, however for the same coordination models no sufficient attention was given to the relation between structural properties of (Nash) equilibria and possible outcomes of dynamical equilibrium selection. Using methods from the statistical physics of disordered systems, the present work investigates both analytically and numerically, the statistical properties of such Nash equilibria on networks, focusing mostly on random graphs. We provide an accurate description of these properties, which is then exploited to shed light on the mechanisms behind the onset of coordination/miscoordination on large networks. This is done studying the most common processes of dynamical equilibrium selection, such as best response, bounded-rational dynamics and learning processes. In particular, we show that well beyond the instability region, full coordination is still globally stochastically stable, however equilibrium selection processes with low stochasticity (e.g. best response) or strong memory effects (e.g. reinforcement learning) can be prevented from achieving full coordination by being trapped into a large (exponentially in number of agents) set of locally stable Nash equilibria at low/medium coordination (inefficient equilibria). These results should be useful to allow a better understanding of general coordination problems on complex networks.
翻译:这些系统的共同特点是,由于一个看似稳定的状态受到小幅扰动,以连锁进程的形式突然发生大规模协调事件,其形式是连锁进程; 文献对发生连锁不稳定的条件进行了大部分分析,但对于同样的协调模式,却没有足够重视(纳什)平衡的结构特性与动态均衡选择的可能结果之间的关系; 使用来自混乱的系统统计物理体系的低统计物理方法,目前的工作从分析上和数字上调查这种网络上的Nash equilibraria的统计特性,主要侧重于随机图表; 我们对这些特性的准确描述,然后利用这些特性来说明大型网络协调/失调的开端背后的机制; 研究动态平衡选择的最常见过程,例如最佳反应、相互交错的动态和学习过程; 特别是,我们显示,在深度稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定、稳定