Lawyers and judges spend a large amount of time researching the proper legal authority to cite while drafting decisions. In this paper, we develop a citation recommendation tool that can help improve efficiency in the process of opinion drafting. We train four types of machine learning models, including a citation-list based method (collaborative filtering) and three context-based methods (text similarity, BiLSTM and RoBERTa classifiers). Our experiments show that leveraging local textual context improves recommendation, and that deep neural models achieve decent performance. We show that non-deep text-based methods benefit from access to structured case metadata, but deep models only benefit from such access when predicting from context of insufficient length. We also find that, even after extensive training, RoBERTa does not outperform a recurrent neural model, despite its benefits of pretraining. Our behavior analysis of the RoBERTa model further shows that predictive performance is stable across time and citation classes.
翻译:律师和法官花大量时间研究起草决定时引用的适当法律权威。在本文件中,我们开发了一个引证建议工具,可以帮助提高意见起草过程的效率。我们培训了四种类型的机器学习模式,包括以引证清单为基础的方法(协作过滤)和三种基于背景的方法(文本相似性、BILSTM和RoBERTA分类者)。我们的实验表明,利用当地文本背景改进了建议,深层神经模型取得了体面的绩效。我们显示,非深度文本方法得益于结构化案件元数据的获取,但深层模型只有在预测时间过长的情况下才能从这种访问中受益。我们还发现,即使经过广泛的培训,ROBERTA也没有超越经常性的神经模型,尽管它具有预先培训的好处。我们对RoBERTA模型的行为分析进一步表明,预测性业绩在时间和引用班级之间是稳定的。