Medical Cyber-physical Systems (MCPS) are vulnerable to accidental or malicious faults that can target their controllers and cause safety hazards and harm to patients. This paper proposes a combined model and data-driven approach for designing context-aware monitors that can detect early signs of hazards and mitigate them in MCPS. We present a framework for formal specification of unsafe system context using Signal Temporal Logic (STL) combined with an optimization method for patient-specific refinement of STL formulas based on real or simulated faulty data from the closed-loop system for the generation of monitor logic. We evaluate our approach in simulation using two state-of-the-art closed-loop Artificial Pancreas Systems (APS). The results show the context-aware monitor achieves up to 1.4 times increase in average hazard prediction accuracy (F1-score) over several baseline monitors, reduces false-positive and false-negative rates, and enables hazard mitigation with a 54% success rate while decreasing the average risk for patients.


翻译:医疗网络-物理系统(MCPS)容易发生意外或恶意故障,从而针对其控制器,对病人造成安全危险和伤害。本文件建议采用综合模型和数据驱动方法,设计能够探测灾害早期迹象并减轻这些迹象的环境意识监测器。我们提出了一个框架,以便使用信号时间逻辑(STL)正式确定不安全系统环境,同时根据用于生成监测逻辑的闭路系统的实际或模拟错误数据,优化针对病人的STL公式的改进。我们用两种最先进的封闭性封闭性人造孔系统(APS)进行模拟评估。结果显示,环境意识监测器平均危险预测精确度(F1-score)超过几个基线监测器,降低假阳性和假阴性率,以54%的成功率减轻危险,同时降低病人的平均风险,达到1.4倍。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
已删除
将门创投
8+阅读 · 2019年6月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Arxiv
0+阅读 · 2021年5月27日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
已删除
将门创投
8+阅读 · 2019年6月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Top
微信扫码咨询专知VIP会员