Automated commonsense reasoning is essential for building human-like AI systems featuring, for example, explainable AI. Event Calculus (EC) is a family of formalisms that model commonsense reasoning with a sound, logical basis. Previous attempts to mechanize reasoning using EC faced difficulties in the treatment of the continuous change in dense domains (e.g., time and other physical quantities), constraints among variables, default negation, and the uniform application of different inference methods, among others. We propose the use of s(CASP), a query-driven, top-down execution model for Predicate Answer Set Programming with Constraints, to model and reason using EC. We show how EC scenarios can be naturally and directly encoded in s(CASP) and how it enables deductive and abductive reasoning tasks in domains featuring constraints involving both dense time and dense fluents.
翻译:自动常识推理对于建立以可解释的AI为特点的类似人的AI系统至关重要。 事件计算(EC)是一个形式主义的大家庭,它以合理、逻辑为基础模拟常识推理。以前试图机械化使用EC的推理在处理密集地区持续变化(例如时间和其他物理数量)、变量之间的限制、默认否定、不同推理方法的统一应用等方面遇到困难。我们提议使用S(CASP),即一种由查询驱动的、自上而下的执行模式,即用EC来模拟和理性地模拟有限制的预先回答设置方案。我们展示了EC情景如何自然和直接在SASP中编码,以及它如何在涉及密集时间和密集流水的制约领域进行推理和绑架性推理任务。