Accurate and automatic segmentation of fibroglandular tissue in breast MRI screening is essential for the quantification of breast density and background parenchymal enhancement. In this retrospective study, we developed and evaluated a transformer-based neural network for breast segmentation (TraBS) in multi-institutional MRI data, and compared its performance to the well established convolutional neural network nnUNet. TraBS and nnUNet were trained and tested on 200 internal and 40 external breast MRI examinations using manual segmentations generated by experienced human readers. Segmentation performance was assessed in terms of the Dice score and the average symmetric surface distance. The Dice score for nnUNet was lower than for TraBS on the internal testset (0.909$\pm$0.069 versus 0.916$\pm$0.067, P<0.001) and on the external testset (0.824$\pm$0.144 versus 0.864$\pm$0.081, P=0.004). Moreover, the average symmetric surface distance was higher (=worse) for nnUNet than for TraBS on the internal (0.657$\pm$2.856 versus 0.548$\pm$2.195, P=0.001) and on the external testset (0.727$\pm$0.620 versus 0.584$\pm$0.413, P=0.03). Our study demonstrates that transformer-based networks improve the quality of fibroglandular tissue segmentation in breast MRI compared to convolutional-based models like nnUNet. These findings might help to enhance the accuracy of breast density and parenchymal enhancement quantification in breast MRI screening.
翻译:摘要:准确和自动地分割乳腺MRI筛查中的纤维腺体组织对于乳腺密度和背景实质增强的量化是必不可少的。在这项回顾性研究中,我们开发并评估了一个基于Transformer的神经网络(TraBS)来进行乳腺分割,与已经建立起来的卷积神经网络nnUNet进行了比较。使用由经验丰富的人工读者生成的手动分割,在200个内部和40个外部乳腺MRI检查的TraBS和nnUNet进行了训练和测试。利用Dice系数和平均对称表面距离评估了分割性能。在内部测试集上,nnUNet的Dice系数低于TraBS(分别为0.909±0.069和0.916±0.067,P<0.001)。在外部测试集上,nnUNet的Dice系数仍低于TraBS(分别为0.824±0.144和0.864±0.081,P=0.004)。此外,对于内部测试集(0.657±2.856对0.548±2.195,P=0.001)和外部测试集(0.727±0.620对0.584±0.413,P=0.03),nnUNet的平均对称表面距离均高(即较差)于TraBS。我们的研究表明,与卷积神经网络nnUNet等卷积模型相比,基于Transformer的网络可以改善乳腺MRI中纤维腺体组织分割的质量。这些发现可以有助于增强乳腺MRI筛查中乳腺密度和实质增强的准确性。