Multi-object tracking (MOT) is one of the most challenging tasks in computer vision, where it is important to correctly detect objects and associate these detections across frames. Current approaches mainly focus on tracking objects in each frame of a video stream, making it almost impossible to run the model under conditions of limited computing resources. To address this issue, we propose StableTrack, a novel approach that stabilizes the quality of tracking on low-frequency detections. Our method introduces a new two-stage matching strategy to improve the cross-frame association between low-frequency detections. We propose a novel Bbox-Based Distance instead of the conventional Mahalanobis distance, which allows us to effectively match objects using the Re-ID model. Furthermore, we integrate visual tracking into the Kalman Filter and the overall tracking pipeline. Our method outperforms current state-of-the-art trackers in the case of low-frequency detections, achieving $\textit{11.6%}$ HOTA improvement at $\textit{1}$ Hz on MOT17-val, while keeping up with the best approaches on the standard MOT17, MOT20, and DanceTrack benchmarks with full-frequency detections.


翻译:多目标跟踪是计算机视觉领域最具挑战性的任务之一,其核心在于准确检测目标并在视频帧间实现检测结果的稳定关联。现有方法主要聚焦于对视频流每一帧中的目标进行跟踪,导致在计算资源受限条件下几乎无法运行模型。为解决这一问题,我们提出StableTrack,一种在低频检测条件下稳定跟踪质量的新方法。该方法引入了一种新颖的两阶段匹配策略,以改善低频检测结果在跨帧关联中的表现。我们提出了一种基于边界框的距离度量以替代传统的马氏距离,从而能够利用重识别模型有效匹配目标。此外,我们将视觉跟踪技术整合到卡尔曼滤波器及整体跟踪流程中。在低频检测场景下,本方法显著优于当前最先进的跟踪器,在MOT17验证集上以1Hz频率实现HOTA指标11.6%的提升,同时在标准MOT17、MOT20和DanceTrack基准测试中,于全频率检测条件下仍保持与最优方法相当的性能。

0
下载
关闭预览

相关内容

【CVPR2023】DynamicDet:目标检测的统一动态架构
专知会员服务
26+阅读 · 2023年4月15日
【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
33+阅读 · 2022年3月18日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【CVPR2023】DynamicDet:目标检测的统一动态架构
专知会员服务
26+阅读 · 2023年4月15日
【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
33+阅读 · 2022年3月18日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员