Time-critical networking requires low-latency decisions from sparse and bursty telemetry, where fixed-step neural inference waste computation. We introduce Network-Optimised Spiking (NOS), a two-state neuron whose variables correspond to normalised queue occupancy and a recovery resource. NOS combines a saturating excitability nonlinearity for finite buffers, service and damping leaks, graph-local inputs with per-link gates and delays, and differentiable resets compatible with surrogate gradients and neuromorphic deployment. We establish existence and uniqueness of subthreshold equilibria, derive Jacobian-based local stability tests, and obtain a scalar network stability threshold that separates topology from node physics through a Perron-mode spectral condition. A stochastic arrival model aligned with telemetry smoothing links NOS responses to classical queueing behaviour while explaining increased variability near stability margins. Across chain, star, and scale-free graphs, NOS improves early-warning F1 and detection latency over MLP, RNN, GRU, and temporal-GNN baselines under a common residual-based protocol, while providing practical calibration and stability rules suited to resource-constrained networking deployments. Code and Demos: https://mbilal84.github.io/nos-snn-networking/
翻译:时间关键型网络需要基于稀疏突发遥测数据做出低延迟决策,而固定步长的神经推理会浪费计算资源。我们提出了网络优化脉冲(NOS)模型,这是一种双态神经元,其变量对应于归一化的队列占用率和恢复资源。NOS结合了以下特性:针对有限缓冲区的饱和兴奋性非线性、服务与阻尼泄漏、具有逐链路门控和延迟的图局部输入,以及与代理梯度和神经形态部署兼容的可微分重置机制。我们证明了亚阈值平衡点的存在性与唯一性,推导了基于雅可比矩阵的局部稳定性检验方法,并通过佩龙模谱条件获得了一个将拓扑结构与节点物理特性分离的标量网络稳定性阈值。一种与遥测平滑处理相契合的随机到达模型,将NOS响应与经典排队行为联系起来,同时解释了在稳定性边界附近变异性增大的现象。在链状、星型和无标度图结构上,基于通用的残差协议,NOS在早期预警F1分数和检测延迟方面均优于MLP、RNN、GRU和时间GNN基线模型,同时提供了适用于资源受限网络部署场景的实用校准与稳定性规则。代码与演示:https://mbilal84.github.io/nos-snn-networking/