This work presents a Network-Optimised Spiking (NOS) delay-aware scheduler for 6G radio access. The scheme couples a bounded two-state kernel to a clique-feasible proportional-fair (PF) grant head: the excitability state acts as a finite-buffer proxy, the recovery state suppresses repeated grants, and neighbour pressure is injected along the interference graph via delayed spikes. A small-signal analysis yields a delay-dependent threshold $k_\star(Δ)$ and a spectral margin $δ= k_\star(Δ) - gHρ(W)$ that compress topology, controller gain, and delay into a single design parameter. Under light assumptions on arrivals, we prove geometric ergodicity for $δ>0$ and derive sub-Gaussian backlog and delay tail bounds with exponents proportional to $δ$. A numerical study, aligned with the analysis and a DU compute budget, compares NOS with PF and delayed backpressure (BP) across interference topologies over a $5$--$20$\,ms delay sweep. With a single gain fixed at the worst spectral radius, NOS sustains higher utilisation and a smaller 99.9th-percentile delay while remaining clique-feasible on integer PRBs.
翻译:本文提出了一种面向6G无线接入的网络优化脉冲延迟感知调度器。该方案将有限双态核与团可行比例公平授权头相耦合:兴奋态充当有限缓冲区代理,恢复态抑制重复授权,邻域压力则通过延迟脉冲沿干扰图注入。小信号分析导出了一个延迟相关阈值 $k_\star(Δ)$ 和一个谱裕度 $δ= k_\star(Δ) - gHρ(W)$,该裕度将拓扑、控制器增益和延迟压缩为单一设计参数。在对到达过程进行轻度假设下,我们证明了当 $δ>0$ 时系统具有几何遍历性,并推导了与 $δ$ 成正比的亚高斯积压与延迟尾分布界。一项与理论分析及分布式单元计算预算相符的数值研究,在 $5$--$20$\,ms 延迟范围内,比较了NOS与比例公平调度及延迟背压调度在不同干扰拓扑下的性能。在单个增益固定于最差谱半径的情况下,NOS在保持整数物理资源块上团可行性的同时,实现了更高的利用率和更小的99.9百分位延迟。