The performance and scalability of semiconductor quantum-dot (QD) qubits are limited by electrostatic drift and charge noise that shift operating points and destabilize qubit parameters. As systems expand to large one- and two-dimensional arrays, manual recalibration becomes impractical, creating a need for autonomous stabilization frameworks. Here, we introduce a method that uses the full network of charge-transition lines in repeatedly acquired double-quantum-dot charge stability diagrams (CSDs) as a multidimensional probe of the local electrostatic environment. By accurately tracking the motion of selected transitions in time, we detect voltage drifts, identify abrupt charge reconfigurations, and apply compensating updates to maintain stable operating conditions. We demonstrate our approach on a 10-QD device, showing robust stabilization and real-time diagnostic access to dot-specific noise processes. The high acquisition rate of radio-frequency reflectometry CSD measurements also enables time-domain noise spectroscopy, allowing the extraction of noise power spectral densities, the identification of two-level fluctuators, and the analysis of spatial noise correlations across the array. From our analysis, we find that the background noise at 100~$μ$\si{\hertz} is dominated by drift with a power law of $1/f^2$, accompanied by a few dominant two-level fluctuators and an average linear correlation length of $(188 \pm 38)$~\si{\nano\meter} in the device. These capabilities form the basis of a scalable, autonomous calibration and characterization module for QD-based quantum processors, providing essential feedback for long-duration, high-fidelity qubit operations.
翻译:半导体量子点(QD)量子比特的性能与可扩展性受到静电漂移和电荷噪声的限制,这些因素会偏移工作点并破坏量子比特参数的稳定性。随着系统扩展至大规模一维和二维阵列,手动重新校准变得不切实际,因此需要自主稳定框架。本文提出一种方法,利用重复获取的双量子点电荷稳定图(CSD)中完整的电荷跃迁线网络,作为局部静电环境的多维探针。通过精确跟踪选定跃迁线随时间的移动,我们检测电压漂移、识别突发的电荷重分布,并施加补偿性更新以维持稳定的工作条件。我们在一个10量子点器件上验证了该方法,展示了鲁棒的稳定能力以及对各量子点特定噪声过程的实时诊断访问。射频反射计CSD测量的高采集速率还支持时域噪声谱分析,从而能够提取噪声功率谱密度、识别双能级涨落源,并分析阵列中的空间噪声相关性。根据我们的分析,在100~$μ$\si{\hertz}频段,背景噪声主要表现为具有$1/f^2$幂律关系的漂移成分,同时存在少数主导性双能级涨落源,器件中的平均线性相关长度为$(188 \pm 38)$~\si{\nano\meter}。这些功能构成了面向QD量子处理器的可扩展自主校准与表征模块的基础,为长时间、高保真度的量子比特操作提供了必要的反馈。