Automatic speech recognition (ASR) systems are vulnerable to audio adversarial examples that attempt to deceive ASR systems by adding perturbations to benign speech signals. Although an adversarial example and the original benign wave are indistinguishable to humans, the former is transcribed as a malicious target sentence by ASR systems. Several methods have been proposed to generate audio adversarial examples and feed them directly into the ASR system (over-line). Furthermore, many researchers have demonstrated the feasibility of robust physical audio adversarial examples(over-air). To defend against the attacks, several studies have been proposed. However, deploying them in a real-world situation is difficult because of accuracy drop or time overhead. In this paper, we propose a novel method to detect audio adversarial examples by adding noise to the logits before feeding them into the decoder of the ASR. We show that carefully selected noise can significantly impact the transcription results of the audio adversarial examples, whereas it has minimal impact on the transcription results of benign audio waves. Based on this characteristic, we detect audio adversarial examples by comparing the transcription altered by logit noising with its original transcription. The proposed method can be easily applied to ASR systems without any structural changes or additional training. The experimental results show that the proposed method is robust to over-line audio adversarial examples as well as over-air audio adversarial examples compared with state-of-the-art detection methods.


翻译:自动语音识别(ASR)系统很容易被试图通过在良性言语信号上添加扰动来欺骗ASR系统的声调对抗性实例。虽然一个对抗性实例和最初的良性声波对人类来说是无法区分的,但ASR系统将前者改写成恶性目标句。提出了几种方法来生成声对抗性实例并将其直接输入ASR系统(在线),此外,许多研究人员已经展示了强健的物理音频对抗性实例(超音频)的可行性。为了防范攻击,提出了几项研究。然而,由于精确性下降或时间管理,很难在现实世界中部署这些实例。在本文中,我们提出了一个新颖的方法,在将声音对抗性实例输入ASR解密器之前,先在对日志添加噪音,然后将其输入ASR解密器。我们指出,精心选择的噪音可以严重影响音调对抗性实例的笔录结果,但对于良性声对抗性音波的笔录结果影响很小。基于这一特点,我们可以通过将通过不精确的对调调调调调的音调性实例比照而将原性辩论性辩论性辩论性实例与初始性识别方法进行比较。拟议的方法显示,因此,对正性培训的任何方法是对性辩论性辩论性辩论性培训结果显示。拟议的任何方法是良好性辩论性辩论性辩论性实例。拟议的方法是示范性辩论性辩论性范例。拟议的方法是示范式方法,显示任何对原试式式式的试制方法。拟议方法,显示任何对原试制方法。拟议制方法。拟议式示范式示范式示范式方法是示范式方法。拟议方法是示范式方法,表明。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
已删除
将门创投
7+阅读 · 2018年4月25日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关VIP内容
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
已删除
将门创投
7+阅读 · 2018年4月25日
Top
微信扫码咨询专知VIP会员