Introduction: Real-world data generated from clinical practice can be used to analyze the real-world evidence (RWE) of COVID-19 pharmacotherapy and validate the results of randomized clinical trials (RCTs). Machine learning (ML) methods are being used in RWE and are promising tools for precision-medicine. In this study, ML methods are applied to study the efficacy of therapies on COVID-19 hospital admissions in the Valencian Region in Spain. Methods: 5244 and 1312 COVID-19 hospital admissions - dated between January 2020 and January 2021 from 10 health departments, were used respectively for training and validation of separate treatment-effect models (TE-ML) for remdesivir, corticosteroids, tocilizumab, lopinavir-ritonavir, azithromycin and chloroquine/hydroxychloroquine. 2390 admissions from 2 additional health departments were reserved as an independent test to analyze retrospectively the survival benefits of therapies in the population selected by the TE-ML models using cox-proportional hazard models. TE-ML models were adjusted using treatment propensity scores to control for pre-treatment confounding variables associated to outcome and further evaluated for futility. ML architecture was based on boosted decision-trees. Results: In the populations identified by the TE-ML models, only Remdesivir and Tocilizumab were significantly associated with an increase in survival time, with hazard ratios of 0.41 (P = 0.04) and 0.21 (P = 0.001), respectively. No survival benefits from chloroquine derivatives, lopinavir-ritonavir and azithromycin were demonstrated. Tools to explain the predictions of TE-ML models are explored at patient-level as potential tools for personalized decision making and precision medicine. Conclusion: ML methods are suitable tools toward RWE analysis of COVID-19 pharmacotherapies. Results obtained reproduce published results on RWE and validate the results from RCTs.


翻译:临床实践产生的真实世界数据可用于分析COVID-19药理疗法的真实世界证据(RWE),并验证随机临床试验(RCTs)的结果。RWE正在使用机器学习(ML)方法,这是精确医学的好工具。在这项研究中,ML方法用于研究西班牙巴伦西亚地区COVID-19医院住院治疗疗程的效果。方法:524和1312 COVID-19医院住院疗程(RWE),日期为2020年1月至2021年1月,分别来自10个卫生部,用于培训和验证再版临床试验(TE-MLM)的治疗效果模型(TE-MLML)1 用于再版的治疗效果模型(OcorcocolateLumab)、 opitinaviral-retonavir、 anzithronical /Hycrocquinquin。另外2 390个卫生部门的住院疗程,保留作为独立测试,以追溯性地分析由TE-MLML模型选择的治疗结果, 和再版本的DNA分析结果。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年9月20日
Arxiv
0+阅读 · 2021年9月20日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员