We consider a node-monitor pair, where updates are generated stochastically (according to a known distribution) at the node that it wishes to send to the monitor. The node is assumed to incur a fixed cost for each transmission, and the objective of the node is to find the update instants so as to minimize a linear combination of AoI of information and average transmission cost. First, we consider the Poisson arrivals case, where updates have an exponential inter-arrival time for which we derive an explicit optimal online policy. Next, for arbitrary distributions of inter-arrival time of updates, we propose a simple randomized algorithm that transmits any newly arrived update with a fixed probability (that depends on the distribution) or never transmits that update. The competitive ratio of the proposed algorithm is shown to be a function of the variance and the mean of the inter-arrival time distribution. For some of the commonly considered distributions such as exponential, uniform, and Rayleigh, the competitive ratio bound is shown to be 2.
翻译:我们考虑的是节点监测器对配对, 更新是在它希望发送到显示器的节点上( 根据已知的分布) 生成的。 节点假定每个传输都产生固定的成本, 节点的目标是找到更新的瞬时, 以便尽可能减少AoI信息的线性组合和平均传输成本。 首先, 我们考虑的是Poisson抵达案例, 即更新具有指数性跨抵达时间, 从而产生明确的最佳在线政策 。 其次, 对于任意发布更新到间时间, 我们建议一种简单的随机算法, 以固定的概率( 取决于分布) 传输任何新到的更新, 或永远不传输更新。 拟议的算法的竞争性比被显示为差异的函数和抵达间时间分布的平均值。 对于一些通常认为的分布, 如指数、 统一 和 Raylei, 的竞争性比被显示为 2 。