In this paper, we introduce the resource theory of unextendibility as a relaxation of the resource theory of entanglement. The free states in this resource theory are the k-extendible states, associated with the inability to extend quantum entanglement in a given quantum state to multiple parties. The free channels are k-extendible channels, which preserve the class of k-extendible states. We define several quantifiers of unextendibility by means of generalized divergences and establish their properties. By utilizing this resource theory, we obtain non-asymptotic upper bounds on the rate at which quantum communication or entanglement preservation is possible over a finite number of uses of an arbitrary quantum channel assisted by k-extendible channels at no cost. These bounds are significantly tighter than previously known bounds for both the depolarizing and erasure channels. Finally, we revisit the pretty strong converse for the quantum capacity of antidegradable channels and establish an upper bound on the non-asymptotic quantum capacity of these channels.
翻译:在本文中,我们引入了不可扩展的资源理论,作为资源缠绕理论的放松。 资源理论中的自由状态是 k 可扩展状态, 与无法将量子缠绕扩展至多个量子状态相关联。 自由渠道是 k 延伸渠道, 保护了 k 延伸状态的等级。 我们通过普遍差异的方式定义了不可扩展的若干量化量化, 并确定了其属性。 通过使用这一资源理论, 我们获得了量子通信或缠绕保全的不便利上限, 超过了由 k 扩展渠道协助的任意量子通道的有限使用。 这些界限大大紧紧于先前已知的界限, 既适用于去极化渠道, 也适用于消化渠道的量子能力。 最后, 我们重新审视了反降解渠道的量子能力, 并在这些渠道的不减损量子容量上设定了一个上限 。