Let $(X_n:n\ge 1)$ be a sequence of random observations. Let $\sigma_n(\cdot)=P\bigl(X_{n+1}\in\cdot\mid X_1,\ldots,X_n\bigr)$ be the $n$-th predictive distribution and $\sigma_0(\cdot)=P(X_1\in\cdot)$ the marginal distribution of $X_1$. In a Bayesian framework, to make predictions on $(X_n)$, one only needs the collection $\sigma=(\sigma_n:n\ge 0)$. Because of the Ionescu-Tulcea theorem, $\sigma$ can be assigned directly, without passing through the usual prior/posterior scheme. One main advantage is that no prior probability has to be selected. In this paper, $\sigma$ is subjected to two requirements: (i) The resulting sequence $(X_n)$ is conditionally identically distributed, in the sense of Berti, Pratelli and Rigo (2004); (ii) Each $\sigma_{n+1}$ is a simple recursive update of $\sigma_n$. Various new $\sigma$ satisfying (i)-(ii) are introduced and investigated. For such $\sigma$, the asymptotics of $\sigma_n$, as $n\rightarrow\infty$, is determined. In some cases, the probability distribution of $(X_n)$ is also evaluated.


翻译:Lets( X_ n: n\ get 1) $ 是随机观测的序列 。 如果 $\ sgma_ n (\ cdot) = P\ bigl (X\ n+1\\\ n\\\ cdd\ mid X_ 1,\\ ldot, X_ n\ bigr) $ 是 美元 的预测分布, 美元 和 $ sgma_ 0(\ cdot) = P( X_ 1\ in\ cdot) = 美元 的边际分布 。 在巴伊西亚框架中, 要对 $ (x_ n) 美元作出预测, 只需要收集 $\ xgmam= (\ sgmam_ n: n\\ geg0) 美元 。 因为 Ionescu- Tulcea 原则, $ 可以直接分配, 而不会通过通常的上一个或上一个方案。 一个主要的好处是, 不必选择任何先前的概率 。 在本文中, $ 受两项要求的 :(i) $ (i) 产生的序列 $ (x_n_n) roii) r_ roii) ro) rox_ disal_ disl_ deal_ disl_ deal dealbis dealbis dealbis dealis deval devialis devial devial devi ex) a be be bevialvial devi devi devials.

0
下载
关闭预览

相关内容

ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
已删除
将门创投
3+阅读 · 2019年10月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
0+阅读 · 2021年6月14日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
4+阅读 · 2019年12月2日
VIP会员
相关VIP内容
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
已删除
将门创投
3+阅读 · 2019年10月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员