Conversational search is a relatively young area of research that aims at automating an information-seeking dialogue. In this paper we help to position it with respect to other research areas within conversational Artificial Intelligence (AI) by analysing the structural properties of an information-seeking dialogue. To this end, we perform a large-scale dialogue analysis of more than 150K transcripts from 16 publicly available dialogue datasets. These datasets were collected to inform different dialogue-based tasks including conversational search. We extract different patterns of mixed initiative from these dialogue transcripts and use them to compare dialogues of different types. Moreover, we contrast the patterns found in information-seeking dialogues that are being used for research purposes with the patterns found in virtual reference interviews that were conducted by professional librarians. The insights we provide (1) establish close relations between conversational search and other conversational AI tasks; and (2) uncover limitations of existing conversational datasets to inform future data collection tasks.
翻译:对话搜索是一个相对较年轻的研究领域,目的是实现信息搜索对话自动化。在本文中,我们通过分析信息搜索对话的结构属性,帮助将它与其他研究领域放在对话人工智能(AI)中。为此,我们对来自16个公开的对话框数据集的150多份记录进行了大规模对话分析。这些数据集收集的目的是为不同基于对话的任务提供信息,包括对话搜索。我们从这些对话记录中提取了不同的混合倡议模式,并用它们来比较不同类型的对话。此外,我们将用于研究目的的信息搜索对话的模式与专业图书管理员在虚拟参考访谈中发现的模式进行了对比。我们提供的见解:(1) 在对话搜索和其他对话AI任务之间建立密切关系;(2)发现现有对话数据集在为未来数据收集任务提供信息方面存在的局限性。