Monitoring the correctness of distributed cyber-physical systems is essential. Detecting possible safety violations can be hard when some samples are uncertain or missing. We monitor here black-box cyber-physical system, with logs being uncertain both in the state and timestamp dimensions: that is, not only the logged value is known with some uncertainty, but the time at which the log was made is uncertain too. In addition, we make use of an over-approximated yet expressive model, given by a non-linear extension of dynamical systems. Given an offline log, our approach is able to monitor the log against safety specifications with a limited number of false alarms. As a second contribution, we show that our approach can be used online to minimize the number of sample triggers, with the aim at energetic efficiency. We apply our approach to three benchmarks, an anesthesia model, an adaptive cruise controller and an aircraft orbiting system.
翻译:监测分布式网络物理系统的正确性至关重要。 当某些样本不确定或缺失时, 检测可能的违反安全情况可能很难。 我们在这里监测黑盒网络物理系统, 记录在状态和时间戳两个方面都不确定: 也就是说, 不仅登录值为一定不确定性, 日志的时间也是不确定的。 此外, 我们使用一个过于接近但表情的模型, 由动态系统的非线性扩展提供。 根据一个离线日志, 我们的方法能够用数量有限的假警报来监测日志的安全规格。 作为第二项贡献, 我们显示, 我们的方法可以在线使用, 以最大限度地减少样本触发次数, 目的是提高效率。 我们对三个基准、 一个麻醉模型、 一个适应性巡航控制器和一个飞机轨道运行系统应用了我们的方法 。