Graphs are by nature unifying abstractions that can leverage interconnectedness to represent, explore, predict, and explain real- and digital-world phenomena. Although real users and consumers of graph instances and graph workloads understand these abstractions, future problems will require new abstractions and systems. What needs to happen in the next decade for big graph processing to continue to succeed?


翻译:图表本质上是统一的抽象概念,它们能够利用相互联系来代表、探索、预测和解释现实和数字世界现象。 尽管图表实例和图表工作量的实际用户和消费者理解这些抽象概念,但未来问题需要新的抽象和系统。 在未来十年里,大图表处理要继续取得成功,需要怎样才能在未来十年中取得成功呢?

0
下载
关闭预览

相关内容

CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Top
微信扫码咨询专知VIP会员