Recent advances in machine learning have been supported by the emergence of domain-specific software libraries, enabling streamlined workflows and increased reproducibility. For geospatial machine learning (GeoML), the availability of Earth observation data has outpaced the development of domain libraries to handle its unique challenges, such as varying spatial resolutions, spectral properties, temporal cadence, data coverage, coordinate systems, and file formats. This chapter presents a comprehensive overview of GeoML libraries, analyzing their evolution, core functionalities, and the current ecosystem. It also introduces popular GeoML libraries such as TorchGeo, eo-learn, and Raster Vision, detailing their architecture, supported data types, and integration with ML frameworks. Additionally, it discusses common methodologies for data preprocessing, spatial--temporal joins, benchmarking, and the use of pretrained models. Through a case study in crop type mapping, it demonstrates practical applications of these tools. Best practices in software design, licensing, and testing are highlighted, along with open challenges and future directions, particularly the rise of foundation models and the need for governance in open-source geospatial software. Our aim is to guide practitioners, developers, and researchers in navigating and contributing to the rapidly evolving GeoML landscape.


翻译:近年来,机器学习领域的进展得益于特定领域软件库的出现,这些库实现了工作流程的简化和可重复性的提升。对于地理空间机器学习而言,地球观测数据的可用性已超过了领域库的发展速度,这些领域库旨在处理其独特的挑战,例如变化的空间分辨率、光谱特性、时间频率、数据覆盖范围、坐标系和文件格式。本章对GeoML库进行了全面概述,分析了其演变历程、核心功能以及当前生态系统。同时,介绍了TorchGeo、eo-learn和Raster Vision等流行的GeoML库,详细说明了它们的架构、支持的数据类型以及与机器学习框架的集成。此外,本章还讨论了数据预处理、时空连接、基准测试以及预训练模型使用的常用方法。通过一个作物类型制图的案例研究,展示了这些工具的实际应用。文中重点阐述了软件设计、许可和测试方面的最佳实践,并探讨了开放挑战与未来方向,特别是基础模型的兴起以及对开源地理空间软件治理的需求。我们的目标是指导从业者、开发人员和研究人员在快速发展的GeoML领域中探索并做出贡献。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
11+阅读 · 2019年4月15日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
11+阅读 · 2018年5月21日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
11+阅读 · 2019年4月15日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
11+阅读 · 2018年5月21日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员