Real-time data analytics systems such as SAP HANA, MemSQL, and IBM Wildfire employ hybrid data layouts, in which data are stored in different formats throughout their lifecycle. Recent data are stored in a row-oriented format to serve OLTP workloads and support high data rates, while older data are transformed to a column-oriented format for OLAP access patterns. We observe that a Log-Structured Merge (LSM) Tree is a natural fit for a lifecycle-aware storage engine due to its high write throughput and level-oriented structure, in which records propagate from one level to the next over time. To build a lifecycle-aware storage engine using an LSM-Tree, we make a crucial modification to allow different data layouts in different levels, ranging from purely row-oriented to purely column-oriented, leading to a Real-Time LSM-Tree. We give a cost model and an algorithm to design a Real-Time LSM-Tree that is suitable for a given workload, followed by an experimental evaluation of LASER - a prototype implementation of our idea built on top of the RocksDB key-value store. In our evaluation, LASER is almost 5x faster than Postgres (a pure row-store) and two orders of magnitude faster than MonetDB (a pure column-store) for real-time data analytics workloads.


翻译:实时数据分析系统,如SAP HANNA、MemSQL和IBM Warifier等实时数据分析系统采用混合数据布局,其中数据在生命周期中以不同格式储存,数据在整个生命周期中以不同格式储存。最近的数据以面向行的格式储存,为OLTP工作量提供服务,支持高数据率,而旧数据则转换成以列为导向的OLAP访问模式格式。我们观察到,日志结构合并(LSM)树由于其高写量和级别结构,对寿命周期储存引擎是一种自然适应性,该结构将记录从一个层次传播到下一个层次。为了利用LSM-TRee建立一个生命周期记录存储引擎,我们做了一个至关重要的修改,允许不同层次的不同数据布局,从纯粹的面向行到纯粹的专栏访问模式,导致实时LSMM-Tree(LSM-Treere)树是一个成本模型和算法,它适合特定工作量,随后对LSER-SER的实验性记录进行试验性评价,这是我们SER-SRA-SER-一个比SDB最高级的SLAA级系统最高级的模型。

0
下载
关闭预览

相关内容

【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
165+阅读 · 2020年4月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Real-time Scalable Dense Surfel Mapping
Arxiv
5+阅读 · 2019年9月10日
Arxiv
4+阅读 · 2019年1月1日
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关VIP内容
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
165+阅读 · 2020年4月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员